Fuzzy partition optimization for approximate fuzzy Q-iteration

نویسندگان

  • L. Buşoniu
  • D. Ernst
  • B. De Schutter
  • Lucian Buşoniu
  • Bart De Schutter
چکیده

Reinforcement Learning (RL) is a widely used learning paradigm for adaptive agents. Because exact RL can only be applied to very simple problems, approximate algorithms are usually necessary in practice. Many algorithms for approximate RL rely on basis-function representations of the value function (or of the Q-function). Designing a good set of basis functions without any prior knowledge of the value function (or of the Q-function) can be a difficult task. In this paper, we propose instead a technique to optimize the shape of a constant number of basis functions for the approximate, fuzzy Q-iteration algorithm. In contrast to other approaches to adapt basis functions for RL, our optimization criterion measures the actual performance of the computed policies in the task, using simulation from a representative set of initial states. A complete algorithm, using cross-entropy optimization of triangular fuzzy membership functions, is given and applied to the car-on-the-hill example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate dynamic programming with a fuzzy parameterization

Dynamic programming (DP) is a powerful paradigm for general, nonlinear optimal control. Computing exact DP solutions is in general only possible when the process states and the control actions take values in a small discrete set. In practice, it is necessary to approximate the solutions. Therefore, we propose an algorithm for approximate DP that relies on a fuzzy partition of the state space, a...

متن کامل

Approximate Solution of Fuzzy Fractional Differential Equations

‎In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative ‎examples.‎

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

Parameter Specification for Fuzzy Clustering by Q-Learning

In this paper, we propose a new method to specify the sequence of parameter values for a fuzzy clustering algorithm by using Q-learning. In the clustering algorithm, we employ similarities between two data points and distances from data to cluster centers as the fuzzy clustering criteria. The fuzzy clustering is achieved by optimizing an objective function which is solved by the Picard iteratio...

متن کامل

Partitional fuzzy clustering methods based on adaptive quadratic distances

This paper presents partitional fuzzy clustering methods based on adaptive quadratic distances. The methods presented furnish a fuzzy partition and a prototype for each cluster by optimizing an adequacy criterion based on adaptive quadratic distances. These distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008